# Idaho National Laboratory

# **Fast Reactor Fuels**

**Steven L. Hayes and Douglas L. Porter** 

Nuclear Fuels and Materials Division Fuel Performance and Design Department

June 5, 2009





# **Outline of Presentation**

- Introduction
- SFR Fuels Experience in the US
  - Fuel Types
  - Fuel Performance Issues
  - Experience/Testing
- Experience with Fuels Containing Minor Actinides
- Summary



# SFR Fuels Experience in the US



# SFR Fuels Experience in the US

#### Metallic Fuels

- EBR-I, Fermi-1, EBR-II, FFTF
- U-Fs, U-Mo, U-Zr, U-Pu-Fs U-Pu-Zr, others

#### Mixed Oxide Fuels (MOX)

- EBR-II, FFTF
- $(U,Pu_{0.2-0.3})O_2$

#### Mixed Carbide Fuels (MC)

- EBR-II, FFTF
- $(U,Pu)C w/15\% (U,Pu)_2C_3$





# **Metallic Fuel Design (EBR-II)**



Features of a Metallic Fuel Pin (from Pahl, et al, 1990)



# **Metallic Fuel Design (FFTF)**



FFTF Series III.b Metallic Driver Fuel Design (from Pitner and Baker, 1993)



## Important Metallic Fuel Performance Phenomena

- Irradiation growth
- Fuel swelling and fuel-cladding mechanical interaction (FCMI)
- Gas release
- Fuel constituent redistribution
- Fuel-cladding chemical interaction (FCCI)







# **Metallic Fuel Behavior—Axial Growth**





# Metallic Fuel Behavior—Swelling & Restructuring



As fabricated U-20Pu-10Zr



X423A at 0.9% BU



X419 at 3% BU



- Redistribution of U and Zr occurs early
- Inhomogeneity doesn't affect fuel life



# Metallic Fuel Behavior—Swelling & Gas Release

#### Swelling

- Low smear density fuels
- Rapid swelling to 33 vol% at ~2 at.% burnup

#### Gas Release

- Inter-linkage of porosity at 33 vol% swelling results in large gas release fraction
- Decreases driving force for continued swelling





U-19Pu-10Zr (γ-phase) at 2 at.% burnup



# Metallic Fuel Behavior—Fuel Constituent Redistribution





## Metallic Fuel Behavior—Steady-state FCCI

#### Fuel-Cladding Inter-diffusion

- RE fission products (La, Ce, Pr, Nd) and some Pu reacts with SS cladding
- Interaction product brittle
- Considered as cladding wastage



U-19Pu-10Zr with D9; 12 at.% burnup (from Pahl, et al, 1990)





## **MOX Fuel Design (FFTF)**



FFTF He-bonded MOX Fuel: a) Driver Fuel and b) Core Demonstration Experiment Fuel (from Bridges et al, 1993)



# **Important MOX Fuel Performance Phenomena**

- Fuel swelling and FCMI
- Fuel restructuring
- **■** Gas release
- FCCI
- Fuel-coolant compatibility









# MOX Fuel Behavior—Fuel Swelling and FCMI



Diameter and cesium fission product accumulation in high-temperature MOX pins, HT9-clad (a) and D9-clad (b). Cs interacted with MOX fuel causing FCMI. (from Bridges, et al ,1993)



# **MOX Fuel Behavior—Restructuring**



MOX fuel ceramography of FFTF driver fuel produced by Kerr-McGee and Babcock and Wilcox, showing restructuring as a function of burnup. (from Hales, et al, 1986)



# **MOX Fuel Behavior—Gas Release**

■ MOX fuel operated at high temperature and undergoing restructuring exhibits high gas release.





#### **MOX Fuel Behavior—FCCI**

#### Hypostoichiometric MOX for SFRs

- As-fabricated O/M < 2.00 to suppress free oxygen at high burnup, mitigate FCCI
- O/M ratio affects fabrication
- O/M ratio affects properties





Melting T vs O/M (from Morimoto, et al, 2005)

Sample 1 - MOX + MAs

Sample 2 – MOX+MAs+REs

Sample 3 – MOX+MAs+REs+NMs

(from Morimoto, et al, 2005)



# **MOX Fuel Behavior—Fuel-coolant Compatibility**

- Run-beyond-cladding-breach (RBCB) of MOX accompanied by fuel/Na reaction and initial crack extension
- Fuel loss can be related to degree of interaction.
- Reactant layer becomes coherent and inhibits further reaction with coolant.



Typical breach extension in induced midlife failure, EBR-II K2B test.

(from Lambert, et al, 1990)



# **Stainless-Steel Cladding & Duct Performance**

#### Performance Issues

- Cladding dilation
- Duct dilation, bowing, or twisting

#### Irradiation Behavior

- Void swelling (AS)
- Irradiation creep (AS & FMS)
- Irradiation embrittlement (AS & FMS)

#### Alloys to Address Issues

- Advanced austenitic stainless steels
- Ferritic & tempered-martensitic stainless steels
- Oxide-dispersion strengthened steel alloys







# **Base Fuel Technology: US Experience**

Crawford, Porter, Hayes, Journal of Nuclear Materials, 371: 202-231 (2007).

|                                       | Metallic                                                                                                  | Mixed Oxide                                                                                                                                                                    | Mixed Carbide                                                                                                                                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Driver Fuel<br>Operation              | ≥ 120,000 U-Fs rods in<br>304LSS/316SS 1-8 at.% bu<br>~13,000 U-Zr rods in<br>316SS 10 at.% bu            | >48,000 MOX rods in<br>316SS (Series I&II) 8 at.%<br>bu                                                                                                                        | None applicable                                                                                                                                                                                                 |
| Through Qualification                 | U-Zr in 316SS, D9, HT9 ≥<br>10at.% bu in EBR-II &<br>FFTF                                                 | MOX in HT9 to 15-20 at.% bu (CDE)  MOX in 316SS to 10 at.% bu                                                                                                                  | None applicable                                                                                                                                                                                                 |
| Burnup<br>Capability &<br>Experiments | 600 U-Pu-Zr rods; D9 & HT9 to > 10 - 19 at.% in EBR-II & FFTF                                             | 4300 MOX rods in 316SS to<br>10 at.%; fab var's; CL melt<br>3000 MOX rods in EBR-II;<br>peak at 17.5at.% bu<br>2377 MOX rods in D9 to 10-<br>12 at.% bu; some at 19<br>at.% bu | 18 EBR-II tests with 472 rods in<br>316SS cladding; 10 rods up to 20<br>at.% w/o breach<br>5 of which experienced 15% TOP<br>at 12 at.%<br>219 rods in FFTF, incl 91 in D9, 91<br>with pellet & sphere-pac fuel |
| Safety & Operability                  | 6 RBCB tests U-Fs & U-Pu-Zr/U-Zr(5) 6 TREAT tests U-Fs in 316SS (9rods) & U-Zr/U-Pu-Zr in D9/HT9 (6 rods) | 18 RBCB tests; 30<br>breached rods<br>4 slow ramp tests<br>9 TREAT tests MOX in<br>316SS (14 rods) & HT9 (5<br>rods)                                                           | 10 TREAT tests (10 rods; Na or<br>He bond); ≤ 3-6 times TOP<br>margins to breach<br>Loss-of-Na bond test; RBCB for<br>100 EFPD; Centerline melting test                                                         |



#### **Transient Fuel Phenomena**



#### Metallic Fuels

- Pre-failure Behavior
  - > Substantial axial expansion
  - > Cladding strain due to gas pressure
  - ➤ Possible fuel-cladding liquefaction
- Failure Behavior
  - Failure generally near top of fuel column
  - > Stress rupture due to gas pressure in cladding thinned by eutectic-like penetration and weakened at high temperature
- Post-failure Behavior
  - Possible fuel injection into coolant
  - Low stored energy, no reaction with coolant, some local sodium voiding

#### Oxide Fuels

- Pre-failure Behavior
  - Axial relocation (apparently, upward axial motion)
  - Cladding strain due to FCMI and gas pressure
- Failure Behavior
  - Failure generally in upper 1/3 of fuel column
  - Cladding melt-through with gas pressure and FCMI, cladding weakened at high temperature
- Post-failure Behavior
  - > Fuel dispersal into coolant
  - Relatively high stored energy, reaction with coolant, local sodium voiding



# Transient Phenomena—Metallic Fuels Fuel/Cladding 'Eutectic' Formation





## **Metallic and MOX Fuels—Summary**

#### Metallic Fuels (U-Zr or U-Pu-Zr)

- Acceptable performance and reliability demonstrated up to 10 at.% burnup, with capability demonstrated to 20 at.% burnup
- Robust overpower capability demonstrated in TREAT tests: ~ 4 to 5x's nominal power; failures near top of fuel column; pre-failure axial expansion
- Performance issues typically creep rupture at high burnup, accelerated due to FCCI.
- Performance phenomena with U-Fs, U-Zr & U-Pu-Zr are the same. Burnup, temperature and cladding performance are key variables

#### MOX Fuels

- Acceptable performance and reliability demonstrated up to 10 at.% burnup, with capability demonstrated to 20 at.% burnup
- Robust overpower capability demonstrated in TREAT tests: ~ 3 to 4x's nominal power; well above primary and secondary FFTF trips; failures near core midplane; pre-failure axial fuel motion
- Performance issues typically creep rupture at high burnup, accelerated due to FCMI (and FCCI if O/M not controlled).
- Metallic and MOX fuel performance in SFRs are both well known, with good experience in the US (MOX fuel in France, Japan)



# **Experience with Fuels Containing Minor Actinides**



# SFR Transmutation Fuels with Minor Actinides (MAs) and Rare Earth (RE) Fission Products

#### Unique Features of SFR Transmutation Fuels

- Pu content, which depending on CR selected my be higher than historic database (with corresponding decrease in U content)
- Minor actinides (Am, Np, Cm) present in significant quantities
- Rare earth fission product (La, Ce, Pr, Nd) carryover from recycle step may be non-trivial

#### Gives Rise to Challenges and Unknowns

- Need for remote fuel fabrication
- Likely need for new fabrication methods (e.g., due to Am volatility; waste minimization, etc.)
- Effects on fuel performance must be determined





## **Metallic Fuel with MA—X501 Fabrication**



- U-20.2Pu-9.1Zr-1.2Am-1.2Np
- Injection cast at 1450°C
- Inhomogeneous microstructure
- Am and Np segregate to phases with variable composition





# **Metallic Fuel with MA—X501 Irradiation**





- LHGR = 450 W/cm
- PICT = 540°C
- Burnup = 7.6%
- 241Am transmutation = 9.1%
- Gas Release
  - Fission gas = 79%
  - Helium = 90%



## **AFCI Fuels Testing in the ATR East Flux Trap**

#### 4 Capsule Positions in E

- Cd shrouds in 1,2,3,4
- 6 rodlets per capsule
- 24 rodlets irradiated simultaneously

#### Capsule Limits

- LHGR ≤ 500 W/cm
- PICT ≤ 650°C
- Capsule pressure ≤ 975 psi







# AFC-2A,B Currently Under Irradiation in the ATR

#### ■ AFC-2A,B Test Matrix

| Rodlet | AFC-2A&B                  |  |  |
|--------|---------------------------|--|--|
| 1      | U-20Pu-3Am-2Np-15Zr       |  |  |
| 2      | U-20Pu-3Am-2Np-1.0RE-15Zr |  |  |
| 3      | U-20Pu-3Am-2Np-1.5RE-15Zr |  |  |
| 4      | U-30Pu-5Am-3Np-1.5RE-20Zr |  |  |
| 5      | U-30Pu-5Am-3Np-1.0RE-20Zr |  |  |
| 6      | U-30Pu-5Am-3Np-20Zr       |  |  |





#### ■ AFC-2A,B Test Objectives

- LHGR = 350 W/cm; PICT = 550°C
- Burnups of 10 at.% (2A) and 25 at.% (2B)
- Group recovery of 30 year-cooled PWR TRU
- Effect of RE fission product carry-over on FCCI





# AFC-2C,D Currently Under Irradiation in the ATR

#### ■ AFC-2C,D Test Matrix

| Rodlet | AFC-2C&D                                              |  |
|--------|-------------------------------------------------------|--|
| 1      | $(U_{0.75}, Pu_{0.20}, Am_{0.03}, Np_{0.02})O_{1.95}$ |  |
| 2      | $(U_{0.80}, Pu_{0.20})O_{1.98}$                       |  |
| 3      | $(U_{0.75}, Pu_{0.20}, Am_{0.03}, Np_{0.02})O_{1.98}$ |  |
| 4      | $(U_{0.75}, Pu_{0.20}, Am_{0.03}, Np_{0.02})O_{1.95}$ |  |
| 5      | $(U_{0.80}, Pu_{0.20})O_{1.98}$                       |  |
| 6      | $(U_{0.75}, Pu_{0.20}, Am_{0.03}, Np_{0.02})O_{1.98}$ |  |



#### Test Conditions

- LHGR = 350 W/cm
- PICT = 550°C
- Group recovery of 30 year-cooled PWR TRU

#### Test Objectives

- Study effect of O/M on FCCI
- Include MOX as control
- High CR (20% Pu) for initial oxide test
- Discharge criteria

2C: ≥ 10 at.% burnup

2D: ≥ 25 at.% burnup



# Comparison of Spectra (ATR vs. LMFBR)

#### ATR Neutron Energy Spectrum

- Highly thermal spectrum in EFT with no neutron filter
- Unaltered spectrum will result in significant self-shielding in dense, highly-enriched fuels

#### Cd-shroud Integral with Experiment Basket

 Efficient removal of neutrons with energies below cadmium cut-off

#### Resulting Spectrum

- Filtered spectrum in experiment does not have prototypic fast neutron component
- Epi-thermal component responsible for most fissions; much more penetrating than thermal neutrons
- Test fuels are free of gross selfshielding





# Radial Flux Depression and Temperature Profiles in Test Fuels

# How prototypic are AFC rodlets irradiated in the ATR?

- Assessed by analysis
- Radial power profiles calculated w/MCNP
- Depletion in fuel and Cd shroud calculated w/ORIGEN (MCWO)
- 1-D thermal analysis using radial powers

# Resulting temperatures for AFC-2C,D oxide rodlets

- 3 cases: SFR, unshrouded ATR, ATR w/Cd shroud
- w/Cd shroud, peak-to-avg power at fuel periphery is 1.22; fuel central temperature 58°C less than SFR (~400°C less for unshrouded case)





#### SFR Fuels Experience in the US

- Fuel Types
- Fuel Performance Issues
- Experience/Testing
- **Experience with Fuels Containing Minor Actinides**